CDRL 01270 The BOEING Company CDRL 01270 O
TASK BR67 D613-21270

Software Technology for Adaptable,
Reliable Systems (STARS)

S i :
AD_A24O 479 | ElectI‘On;i:b,‘srjvlst::r(:lstol)ivision: D T I C
" i Air Force Systems Command, USAF: &9 FLECTE
[RERHAN Hanscom AFB. MA 01731~5000: SEPL1 199 @

Contract No:
F19628—~88—D—-0028

CDRL 01270
Inter--Tool Communication Facility
(ITCF) Final Report '

February 16, 1990

Prepared by:
SofTech, Inc
San Diego, California

Submitted by:

The Boeing Company
Defense and Space Group
Systems and Software Engineering
P.0O. Box 3999
Seattle, Washington 98124

91-10149

AR

Approved for‘ publjt_c release - distribution is unlimited
91 9 9 044

[nter-"Tool Communication FFinal Report
bot3-21270

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE

Form Approved
OMB A£p0704 0188.

P 16p0M05 D 00" Kk Y5 o 1

bwmlpr« CAI0NG 0 Dme Xt

G ISTUSns,
MR e T reviewn; De colectorn ol

B~ 2agae

S ; tys turden estmate o any ot a:u.‘o!hswtea:no! famavn, nm:hg suzestons ko red!
Serviows, Deectorate It Fibormanon Opo atons e Feponts, 12.5.»!ersm Davs Hig'me 2y, Sue 1204, Aington, YA 2204302 &% & be Ol‘»e o Marggemen: anc Fudgo.Pa:awub. Rm;szmu:MO&—mss Vrashngion,

S @15105 C21d SOU 085, GaDHING 37K MANLNNG he 02 NEsdsC, 3%
g by butden, 1o " hngn Headdux s

1. AGENCY USE ONLY (Lesve biant; ™~

2 REPORT DATE

a REPORT TYPE AND DATES COVERED

16-FEB-90

<. TiTLE AND SUBTITLE o

Inter-Tool Communication Facility (ITCF) Final Report

S FUNDING NUMBERS

C: F19628-88-D-0028

The Boeing Company
Boeing Aerospace and Electronics Division
Systems and Software Engineering

P.O. Box 3299
Seattle, Washington

98124

t. AUTHOR'S) =
- . : -67
Carl Hitchon, SofTech Inc. TA: BR

7. PEREORMING ORGANZATION NAME(S) AND ADDRESSIES) - & PERFORMING ORGANZATION

REPORT NUMBER

D-613-21270

N

| ESD/AVS
Bidg. 17-04
Room 113

s .

Hanscom Air Force Base,

2. SPONSORNG / MONTTORING AGENCY NAME(S) AND ADDRESS(ES)

01731-5000

10. SPONSORING I MONITORING
AGENCY REPOAT NUMBER

13. SUPPLEME h’TAnY NO'IE.S

120 DSTRIBUTION! AVAILABILITY STATEMENT

Approved for public release - distribution unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Mxwnum 200 words)

performed.

root directory.

The Inter-Tool Communication Facility (ITCF) was specified under STARS Task Qll. A
VAX/CAIS-A implementation of the core ITCF facilites, a demonstration of the ITCF
using existing tools, and this final report were completed under STARS Task BR67.
This report describes the ITCF, the design, the implementation, and the demonstration
More detailed documentation and information about the ITCF and the
demonstration tools can be found in the ITCF Version Description and in the source
code for the ITCF packages and for demonstration tools.
incl. ling source code and reports are currently on the Boeing MDSC VAX under the

All ITCF deliverables,

14, SUBJECT TERWS

15. NUMBER OF PAGES
Keywords: STARS 32
ITCF 16. PRICE CODE
17. SECURITY CLASSIAZATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIRCATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified None

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Stc 239-18
298102

CDRL 01270
TASK BR67

The BOEING Company
DA13-21270

CDRL 01270

Inter—Tool Communication Facility (ITéF) Final Report

Prepared by

Reviewed by

Reviewed by

Approved by

,,QW\(\.,U’\»«

“’Cdr]% 1on, SofTech Inc. /lol‘lo

Chi

rdmmer (BR67)

Inter=T ool Communication

m s E. King
S em AIChl[eC[

\JL-'\(\ LW

K

John M. Neorr 216190

N
Development Manager

_,\)-—-——V-V\ H‘U"S—lx., aj”ﬂ'“i‘)

William M. Hodges

STARS Program Manager

Inter ="Tool Communication Final Report
N613-21270

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

TABLE OF CONTENTS "

Section 1

INTRODUCTION . e 5

Section 2

GENERAL DESCRIPTION 6

Seetion 3

FEC CONCEP TS o e e e e e e e e e e 7
3.1 Clients and Connection Centers . . . e e s e e e e e e e e e e e e e e 7
3.2 S CAME L Lt e e e e 7

Scection 4

Implementation Overview L e S

_ Scetion 5

DESIGN PROBLEMS AND SOLUTIONS .. 9
3.1 Concurrent Access Lo Streams Lo e e 9
5.1 Using Ada Rendezvous .o oo oo 9
S22 Using Monilors L L e e e 10
5.1.3 Monitor Iimplementationo L L e 10

b 5.2 Stream COPYINg . e e e e 11

Scction 6

CHANGLES TO THE ORIGINAT DESIGN L. L. [12

Inter="Tool Communication Final Report
Dols-21270

L)

CDRL 01270
TASK BR67

Section 7

DEMONSTRATION OF THE I'TCF

7.1 Tool Sclection

7.2 Tool Adaptation
7.3 Tool Adaptation Problems
7.4 "Tool Adaptation L:lTort

Section 8

UNIMPLEMENTED FEATURIES

Section 9

CONCILUSIONS AND LESSONS LIFARNED

Sccuon 10

FUTURL APPLICATIONS

The BOEING Company
D613-21270

TABLE OF CONTENTS |continucd]

7.5 Instantiation ol the Demonstration Connection Center
7.6 Demonstration Performance Results
7.7 Running the Demonstration

.....................

Inter - Tool Communication FFinal Report

Doli-21270

...................

............

.................

CDRL 01270
.............. I3
.............. 15
.............. 15
.............. 16
.............. 16
.............. 17
.............. I8

.}- .
.............. 19
.............. 21

Aceesaioa For /“
ETIS QRAAIL &
PRIC TR oo
Wsonssneed a !
.Iml?.il‘!.auic;u__,_i
i
3y
Distributien/

Availabllity Cosesn

Dist Speeial

jAvail end/er

M 1

.
e

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

L. INTRODUCTION

‘The Inter="Tool Communication Facility (ITCIE) was specified under STARS Task
Q1. A VAX/CAIS-A implementation of the core I'T'CI facilitics, a demonstration
of the TTCE using eaisting lools, and this {inal report were completed under STARS
Task BR67. ‘This reports describes the FICE, the design, the implementation, and the
demonstration performed. More detailed documentation and information about the
II'CE and the demaonstration tools can be Tound in the F'I'CE Version Description and
in the source code for the I'T'CEF packages and for demonstration tools. All TTC
deliverables including source code and reports are currently on the Bocing MDSC
VAX under the root directory:

SYSSUSER7|SOFFTECHTUSERS.SABBUHIL.ITCE]
The Tile contained therein deseribing the directory organization ol the deliverables is:

[SOFFECHTUSERS. SABBUHLITCEFIFTCF_VERSION_DESCRIPTION.ADS.

Inter-"Tool Communication Final Report
Daol3-21270 5

CDRL 01278 The BOEING Company CDRL 01276
TASK BR67 D613-21270

2. GENERAL DESCRIPTION o

The following s a general description of the ITCEF. More details can be found in the
lile ITCH_Version_Description.ads and in the package specifications and bodies lor the
delivered software.

The I'TCI permits concurrently eaccuting tools o cooperate in an integrated manner
while maintaining their high degree of modularity and functional independence. The
II'CIL offers a layered architecture of communication services which may be adapted o
meet the requirements of a varicty of tool integration strategics. “The principle
conceptual layers are streams, stream prolocols and messages.

The TTCE services manage the complex details ol inter-tool communication and
provide conceplually simple and casy o use interfaces o the ol writer. These services
Tacilitate the integration of wols with relatively modest effort, including existing tools
which were not originally designed to use the TECHE packages.

The ITCE is intended to transfer date which 1s primarily transient in nature as opposed
to data which is permancently stored in the environment data base. Permanent data
should be handled through the enviranment object management system. Nevertheless,
simplc ols can be implemented, using the II'CE packages.-which allow the connection
of other tols to files (including devices) as sources and sinks for inter-tool data.

The IICIN is also intended o support communication between tools eaccuting in
dilferent CAIS-A environments that are connected by a gateway. However, this
lcature was not implemented under task BR67.

Inter="Tool Communication 'inal Report
Dol3 21270 6

CDRL 01270 The BOEING Company
TASK BR67 D613-21270

3. ITCE CONCEPTS -

The underlying concepts of the I'TCE have been derived from a number of sources.
These include UNIX pipes, plumbing fixtures and filters; the CAIS-A. 10 Connection
Moadel: and various Remote Procedure Call (RPC) facilitizs and stream manipulation
packages. ‘The I'IELD environment integration mechanism, described by Steven Reiss
of Brown University, was particularly influential.

3.1 Clientz and Connection Centers

The Tocus of TICT operations are server processes called connection centers. A given
:connection center may have one or more clients. A client may be a tool (i.c. a
process). or a gateway. A gateway client represents other clients and/or connection
centers on a remote host system. Clients communicate with one another via the
connection center.

The first step in using the I'ICE is the creation of a connection center. Alter the center
has been created, clients may be connected o the center. Connection of a client o a
connection center establishes a communications channel between the client and the
center. This channel is called a connection. Clients may be connected or disconnected
at any time. Only clients of the same center may communicate with one.another.
Fach clicnt may be connected to only one center at a given time. TClients may
communicate through the connection center concurrently.

3.2 Streams

AL the lowest conceptual layer ol the I'TCY, data is passed through the connection
center in the form of streams. A stream is simply a sequence of data (of indclinite
length) generated by a client. A client sends data by writing into a stream. A\ client
receives data by reading Irom a stream.

The flow of data in a strecam is uni-directional. When bi-directional flow is required.
a reverse stream called a reply stream may be esed. A client process may use multiple
streams concurrently. The Tlow of date in cach stream is independent of other
Junrclated streams.

n

Streams may be used by processes Tor dircet communication without the use ol @
connection center. Connection center Tacilities are built on top of the lower -level
stream services, Streams may also be used locally within a process Tor communication
" hetween Lasks without the overhead associated with sending stucams through a separate
conneclion cenler process.

Inter="Tool Communication Final Report
DO13-21270

-

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270)

4. Implementation Qverview ’

The core Tacilities of the I'TCIT were implemented on the MDSC VAX machine using
VAXAda 2.0 and Version 4.5 of the CAIS=-A implementation. The I'TCE services are
provided as a collection of packages containing interfaces which may be called by
CAILS wuols.

The principal packages implemented are:

Stream_IO - Supports all low-level stream operations including interprocess
communication.

Text_Stream_10 - Provides the interfaces of Ada Text_1O for reading and
writing stream data.

Connection - Provides interfaces that client tools call w0 interface with a
connection center.

Conncction_Center - A generic package which supporis the instantiation of user
defined connection centers.

. ; . . - 7 N - ""’ . '!_'-. .
Distribution - A generic package which performs general distribution list
management fenctions for instantiations of package Connection_Center.

Monitor - A fow-level packages which is used to manage concurrent aceess to
strcams. This is an internal ITCF package which contains no tool interfac

"

Inter="Tool Communication Final Report
D6l3-21270 N

CDRL 01270 The BOEING Company CDRL 01270 .
TASK BR67 . D613-21270

5. DESIGN PROBIEMS AND SOLUTIONS o

. Aspects of the TTCT implementation which presented significant technical challenges
were the management of concurrent aceess to streams and the interproces: connection
resources, and the mechanism to support stream copying. Stream copying is a
fundamental TTCE concept of substantial power in alfecting the distribution of streams
and the composition of streams [rom other streams.

5.1 Concurrent Acc 0 Streams

Two problems needed o be addressed in the handling of concurrent access. The first
swas o develop a conceptual maodel that would make a correct implementation
conceptually mun.ngcublc. The second problem was to assure that management of
concurrent access would be reasonably efficient.

5.1.1 Using Ada Rendezvous

Initial attempis to achicve a conceptual model for concurrent access were fucused on
the direct use of the Ada rendesvous model. One question was how tasking should be
applicd. The Ada rendezvous madel is generally applied by identifying a nhjui W
which concurrent access may aceer and then dpplunz a task to manage thg object. All
access o the object is then accomplished through calling entries to that task’ Hence.
one attempt to the solve concurrent access pmbh.ms in the ITCF was o have cach
stream be managed by a separate task. “This dppmach was eventually R:ju.k.d because
it would require a farge number of tasks. straining system resources. Also, it was not
clear how stream copying could be implemented. Stream copying would either require
I) stream-tasks to call other stream - tasks. thereby 1aking themselves unavailable for

= saiisfving other concurrent access to the stream. or 2) the creation of addition
copy-tasks that would simply read data from one stream-task and write-data
another. While such tasks could be recyeled. thus reducing the overall overhead of
frequent task creation. the number of tasks that would be required was still of some
coneern.

Another approach o using roadezsous was 1o define a single task which provides all
services ‘0 all streams. This task would scrialize aczess o all stream operations.
MWhile this approach would greatly reduce the number of tasks required. it had som
disadvantages. One disadvantage was that all stream functions would have to be
provided in a single large task body. In order o modularize these Functons. calls
would have W be used in the ACCEPT statements of this tas hud\, adding additional
orerhead (which could possibly be reduced through the use nl' PRAGMA INLINI).
Abso. how o interface with other tasks which manage transmission of streams over
connections was not clear.

While these probicms probably could be overcome. there was one problem that was
sharad by all approaches that used Ada rendezvous exclusively: every operation on a

Inter-Tool Communication Final Report
Doli-21270 9

CDRL 01270° - The BOEING Cw';zpany
"TASK BR67 - - 61321270,

CDRL 01270

"
et & 9
*

stream would involve four tasks swilches. I‘ ask s'.vuchmg 1as cerlam unavoidable
overhead cyen in the best Ada runtime implementations. All’registers must be stored
and loaded, and the scheduling algorithm must bc invoked. ﬂns would imply that an
operation which is 1o writc a smnle byte to a eredn could Rave an overhead on the
order of a hundred instructions. This overhead could be smu!xcamly reduced by using
buffering to minimize the number of rendezvous réguired to transmit a ngen amount of
data. However, this would only help in the Pul and Gel functions in package
Stream_I0. The overhead for all other functions ¢ ’oulu not be n,duccd

-3,. .

An alternative approzch was to apply Hoare's Momtm conce;it In this appmach the
set of all sireams is considercd a shared resource 1o whichfaccess is control via a

PIRRTINN |

5.1.2 Using Momtors

monitor entity. Whenever a fask needs (o meralé on a <tredih it must firs{ cater the

monilur. Monitor_entry is gueucd so that orly ong task can exceute within the monitor
al a time. If the OPLlellm cannot be completed immediately t;or examplc an aticmpt
o rcad a stream which is temporarily empty), the task mc.y suspend itsell on a
condition variable uniil the vperation can be compleied. Wi nen a task suspends jtsclf
within a monitor, another task is allowed to enter. F w.muallv‘ tesk will enter which
writes (o the stream and signels the condition varlable upon “$hich the suspended task
is wailing.

’

e iven

5.1.3 Monitr Implemeatation

v,

The monitor framework was very kelpful in sorting out the conlurreat access problems.
Howcver, since Ada docs not directly sepport momlors, it was necessary 0 coasider
1w they would be m‘p!cmm!cd Waiting must occur when a tdxk altempts (u cnler 2
maonitor, if znother task is esing the monitor, and wher a lask must be suspeaded on 2
condition variable. In Ada, the omv way for a ta§k to wait unul SOme eveni OSCurs i3
through a call (v a task cntry. A very \,nrﬂc and direct appréach to the monitor eniry
probicm is to use a simple task which alternately accepts all eatry call to eater ihie
moniter end an entry cell to icave the monitor. l'he major drawback to this solution is
that the c}dc of entering and Icaving the monitor \muldfefqure two rendezvous
involving eight task sw ftches. : = :

-
- -

However, an imporiant obhservation is {ha-, in niost cases, when a task attempis {0
caler the monitor there will be no task executing in the monitof. Tlms, In most cases a
rendesous should be unnecessary. In the ITCF m‘plcmuﬂalx a counter which can
be incremented/decremented and tesled zs an atomic uperaum is used to determine
whether a fask is «.u.rcnlly execuling within the mositor. A rendezvous is used to
suspead an cntering task only if the “result of incrementing the covnier indicates that
another task is al n.adv cexeculing inside the monitor. 'Vl.xs strategy reduces the
overhcad of monitor cntry and cxit to a few insiruciions, ‘versus the hundreds of
instructions that would be exceuted using rendezvous exclusive *ly

i
:
¢
Inter-Too! Communication Final Repmit

3-2127 o d
*3] 16:06 D61 0 206 772 4345 FASE.COI

.

??"

HH,

Sl r,' £ ';' ¥

0CT

IR, ' féi.':.i':’i.f. }A‘ R O] w\w?/ Ry
: : S \
.CDRL 01270 The BOEING C ompmz y * - CDRL 01270

. TASK BRé67 . D613 '117'/0 ‘

The u,dmtque uscxi could be criticized for not bung pure A"dd However, the only
nnplumntatmn dt,pmdem,y introduced by this * Jhnique is the unplunu\tdtlon of the
atomic counter on’ the host. Mos: processors hav«.f such an mstr uction, Others have an
instruction (such as a test and set) which can be used to syntl esize an atomic counter,
In the case of the VAX, the VAXAda compiler hé\\ a built=in procu.luxc for an atomic
counter.” For othér hosts or compiling systems, gt may be ndeessary 1o write a small
aqqembly Iangud;,e unit.

R)
A~

fzmmdy - ‘?‘

In any case, lhc dcpundumy is isolated ' within a small packdgu called

" Protected.Counter, There is no dependency on the Ada run- um implementation. All

~ lasking oper*mons arc still handled in pme Ada.

*5.2 Stream C ‘Opying

]
'

B e e I

4
H

Several false starts wore u,qum,d in llu, design 01 stream wp)_'mg, bofm a satisfactory
solution was arrived at. The final solution was 4 place an itgm represcnting the “tail”
(i.c. the mnamclu) of & copicd strcam in the ilem queue of every target stream to
which the stream is copied, These tails arc kept on a lisl, Jach time another data
buffer is added to the source stream, an item referencing thﬂt buffer is inserted into
cach farget stream lmmcdlalcly ahcad of cach tail (in the h\[of tails) for the LOplCd
stream. llm effectively copies the data info each target strcam’ad the appropriate point
within cacl of those streams. When the copied stream is chmg\ the {ails are discarded
since no further insertions of data from the copied' stream arc ﬁwmsary
In applications involving large streams, the amoum of ddld which is buffcred in a
stream must be bounded 1o prevent storage resources [rom bethg eahausted. Hdndlm&,
of bounded buffering in streams was problematic duc to the cdpying facility. Initial, it
was not clear how 10 account for buffered data which has beep copied. As the design
of the copy capability progressed, it was decided that bult¢1'~ would be copied by

reference rather than by value for efficiency réasons. Ilu. accounting problem of

11

placing bounds on buffering was then solved by dyc.lgnaung thé strcam to which data is
originally written as the owner of that data. ‘Thus, copying a Stream A 1o a stream B
has no affect on the amount of data that can be wiillen directly to stream B. A shared
bulfer is (mly rcleased after every reference to it in any strcam has been deleted. Thus,

write operations 1o stream A which has been copicd 1o stmurf B may be blocked until

data is read from both streams A and stream’'B.

TS 22

Rt A &0

Inter-"Tool Communication [Final Rupol’t

212 11
’Eil 16:687 DA13-21270 . p4u} = ??u 4446 PAGE.BGGZ

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

6. CHANGES TO THI: ORIGINAL DESIGN "

I'ew changes were made to the ITCI specifications during the implementation.
However, one significant change was a redistribution of the functionality provided by
the packages Stream_10 and Stream_Scrvices. During the implementation it was
rcalized that the underlying strcam services (which were not detailed in the
specification) could be useful outside the conteat of ITCT connection centers. Thus,
interlaces originally intended to be hidden in the implementation of Stream_Scrvices
were instcad made a visible part of package Stream_[O. Thus, package Stream_10
now provides full access to low-level stream lunctionality. Package Stream_Scervices
was eliminated.

Higher-level functionality. associated specifically with the use of a conncction center.
was removed from package Stream_[O and placed in package Connection which
already included interfaces through which client processes communicate with a
connection center. (One regret here is the package name Connection which would
more appropriately be Center_IO. This could be fixed in a luture version.) The
rearrangement of these scrvices improves I'I'CE modularity since general=purpose
stream services (provided by Stream_I0O) can now be used without the overhead of also
binding=in conncction center support.

Y

" "; v

. - , -
'y v N -

Inter="Tool Communication Final Report
D613-21270 : . 12

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 ‘D613-21270

7. DEMONSTRATION OFF THI: IT'CF "

The selection of a demonstration for the ITCF was a compromisc between the desire (o
demonstrate a meaninglul, non-trivial ITCF application and the need to devote most of
the available time to the implementation of the I'TCE. A mcaninglul demonstration
would be one in which the functionality of the existing tools is integrated. ‘The
repository containing STARS and SIMTTEL tools was considered as the primary source
of existing tools. In order to minimize the risk ol demonstration problems, atiention
was focused on relatively simple, small tools. A demonstration of the ability o
integrate tols was of more interest than the tools themselves. For example, integration
of the ITCI with ACE (Ada Command Environment) was considered but was not
sundertaken, primarily because ACL is large body of software which would have had o
be ported from a UNIX environment to CAIS-A on a VAX. Also, the integration of
ITCE with ACE would not in itsell’ demonstrate the atility of the ITCE. At least two
more tools would be required o perform some sort »f demonstration,

7.1 Tool Sclection

There were several ols in the repository which could perform operations on Ada
source code. These included editors, spelling checkers, Ada statement counters and
Ada source code reformatters. Since programmer’s spend much ol their time using
text editors, it scemed that a natural choice for a demonstration would be one which
extended the Tunctionality of a teat editor through integration with other teat processing
tools. Thus, a demonstration was conceived in which an editor would be the primary
tool interfacing with the user and would be integrated with other text processing tools
operating as servers through o connection center. This scenario secemed to provide a
relatively straight=forward demonstration.
A simple line editor, written in Ada, was chosen from the repository. Although it is
unlikely that this particular cditor would be a heavily used tool in an actual SI71, the
same types of eatensions could be made to the more popular varieties of screen editors.
For purposes of the demonstration, additic .1 commands were added o the editor
which would be carried out through a connection center. In particular, new commands
to reformat and to count statements in Ada source code being edited were added. These
new commands cause the contents of the current editor buffer o be transmitted o other
tools via a conncction center and a reply o be received by the editor.

"

An Ada source code reformatier was selected from the repository. There were at least
two choices. The simpler and smaller reformatter was chosen. Initially, a spelling
checker was also sclected as a server ol for the demonstration. However. as time
began o run out it was decided to replace the spelling checker with a simpler ol an
Ada statement counter. o reduce the risk of not meceting schedules. The main reasons
for the substitution was that the spelling cheeking had a very long startup time and its
user interface scemed complen. [C was not cledar how much effort would be required o
adapt it lor an acceptable demonstration.

Inter="Tool Communication Final Report
PDO3-21270 I

»d

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

In order to demonstrate the broadeast and reply contatenation capabilities of the
I'TCT, another simple command was added to the line editor. This command causes a
message o be sent to all clients of a connection center which have registered
themselves as server wols. Llach tool responds with its registered name. These
responses are concatenated into a single stream by the connection center and delivered
back to the editor which prints the response. Hence, the net affeet of the this new
editor comimand is to poll for the names of all available server tools which are
connected Lo the center. '

7.2 "Tool Adaptation

. Adaptation of the tools chosen for integration via the I'TCIY was straight-forward. In

the case of the line editor, the new commands were readily added. However, the
command for reformatting suggested that another editor extension would be necessary.
The problem is that if there are mistakes in the source code. the results of reformatting
could be erroncous in which case the user may wish to restore the prior contents of the
cditor bulfer in place of the reformatted contents. The mechanism used by the editor
o store the teat being edited was easily modified to handle two teat buflers instead of
onc. Another command was added to the cditor which allows the user o toggle
between these bulfers. Thus, alter a buffer is formatted the user has the option of
switching back to the original teat bulfer as it was before invoking the rcl'(.);mz},'l.lcr.

Both the reformatter and the Ada statement counter tools were easily adapted since
they already used TEXT_IO for purposes of input and output. Adaptation of these
tools was largely a matter of adding a few calls to the ITCE package Connection.
Iiach tool had to perform the following initialization steps:

1. Call Open_Connection to initialize the connection to the connection cenler.

2. Call Register_Pattern to register the identilication of the ol with the connection
cenler.
3. Call Activate_Connection to notify the connection center that the tool was ready

to receive request streams.

I Phereatter, the wols would call the Receive interface in package Connection to receive
cach stream containing source code to be processed. The tools would then open cach
stream using TEXT_STREAM_IO. Since these wols already used TEXT_IO to read
their input and write their output. the TEXT_IO calls had only to be changed to call

CTEXT_STREAM_IO instead.

More detailed information about the changes made o tools for adaptation can be found
in the Ada source code files for the tools

Inter="Tool Communication FFinal Report
D613-21270 14

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

7.3 Tool Adaptation Problems

Although the changes necessary to integrate the tools with the ITCFEF were minor, other
aspeets of tool behavior became important in the context of integration. This was
particularly evident in the reformatter tool. The reformatler, as it was written, would
stop processing if it encountered anything which is not correct Ada in its input stream.
While this sort of behavior may be acceptable in a stand alone tool, in an integration
setting it seemed counter—productive. If the user sent his editor buffer to the
reformatter, only part would come back in the (very likely) event that the source code
contained errors. Ilence, changes were made to the reformatter to cause it to pass
remaining source code through unchanged in the event of a syntactic crror trom which
: it could not recover.

The reuse of tools such as the reformatter in this way increases the need for ool
reliability. While occasional failures of a stand-alone tool may be tolerable, the
failure of a tool in a closely integrated scenario may not be so well tolerated. T'or
example, an obvious and implied eatension of the demonstration scenario would be the
multipleaed use of the connection center and the server tools (the reformatier and the
statement counter) by .several independent invocations of the cditor tool. That is, the
services provided by the connection center could be provided to multiple independent
users. In this case, il onc user sends an sourge program to the reformatier which
causes it to abort, then the facility is also lost to the other” users of tle connection
center.

IHence, the robustness of tools becomes more critical. It may be that future
adaptations of tools to the I'TCF should include considerations such as restarting a tool
il it fails. At the very least, when one tool [ails, other tools (,onnu,ted to conncction
center should not necessarily fail as a consequence.

7.4 Tool Adaptation Effort

Much of the effort that was necessary to adapt the reformatter was spent in trying to
[ix existing weaknesses and make it more robust. There are still existing bugs in this
ol which could not be fully investigated in the time available. Approximately a two
1mzm—wccks of ceffort were applied to this wol.

Adaptation of the Ada statement counter was trivial. requiring only a few hours. [t
was only necessary o add a main processing loop.

" Adaptation ol the line editor was lairly straight=forward. Some knowledge ol its
internal structure was necessary in order o add the new commands and o add the
capability of multiple bulfers which could be swapped via o command. The editor
adaptations required approximately a man-weck.

Inter="Tool Communication I'inal Report
Dol3-21270 l

w

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

Note that all adaptations were performed by a programmer familiar with the ITCF
interfaces but compleiely unfamiliar with the tools being integrated. No consultation
from others was sought in performing the adaptations. Realistically, this situation (no
comultation) probably reflects typical Tuture tool adaptation scenarios. However,
those with eapertise in these tools could have performed the necessary adaptations
morce quickly.

7.5 Instantiation ol the Demonstration Connection Center

For fleaibility, I'I'CE connection center software is provided in the form ol gencric
packages which must be instantiated by the user to create a connection center having

:the desired distribution strategy. The connection center instantiations used in the

L

demonstration are in a package called Integration_Center. The actual parameters for
the instantiation include an Ada type defining patterns and a matching function which
compares streams o be distributed against patterns. The Integration_Center package
defines patterns to be simple strings up to 20 characters long. These strings are the
names ol the server tools connected to the Integration_Center, c.g. "FNormatter” and
"Ada Count”. Requests sent by the line editor to the connection center have a header
which indicates which tool is to receive the stream. A stream with the header "
sent to all of the server tools connected. The "*” header is used to implement the editor
command which polls the server tools connected tQ.the connection center. TR

I8

‘The implementation ol the Integration_Center was relatively simple since most of the
work is alrcady taken care of in the of bodies of the generic packages. lowever,
instantiation of package Distribution is non-trivial, requiring a detailed understanding
ol how to distribute call streams and how to concatenate thejr corresponding reply
streams. The process of making a connection center could be made substantially casicr
by providing a higher-level generic package which would automatically instantiate the
package Distribution with a standard distribution strategy.

7.6 Demonstration Performance Results

Responsiveness ol the special editor commands was found to be Tairly good once all
ools and the connection center were established and initialized. Typical response times
for small cditor bulfers is one or two seconds. However, the initial establishment of the
connection center and the tols is lairly lengthy primarily due to the many node
creation operations performed by the CAIS-A implementation in creating the
processes and 1O channels (sia nodes are created for the demonstration conliguration).
It is eapected that these cereation times will be much shorter in future. improved

“releases of the CAIS=-A implementation.

Performance was signilicantly poorer when large streams were transmitted. .\ three
page source file can take on the order of 20 scconds o be reformatted. The
computational overhead Tor stream management is relatively low. The apparent cause
ol the performance problem with large streams is the use ol polling in the Tow -level 10

Inter="Tool Communication Final Report
D615-21270 IO

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

mechanism. It is likely that performance would be much better il this polling
mechanism were replaced with an interrupt=driven IO mechanism.

7.7 Running the Demonstration

‘The following steps may be used to run the demonstration on the Boeing MDSC VAX:

1.

(O8]

wh

0.

10.

Type "H” (help) and "S” (summary) for an ¢ditor command summary. .
3 .’: e

I.ogon as user SOFTECHTI, password GREENE.

Type: RUN UOBICAIS_LLLOGON to logon to the CAIS. Specily user

ITCF_DEMO. password I'TCF_DIEMO.

Wait for the prompt "file?”. This may take a minute.

Type the name of a VMS file to read into the bufter;

or,
Type a carriage return to start an empty buffer.

1

Type '/\ (append) to enter an Ada program from the keyboard. Type "." {R
o end input mode.

Type "L (list) "A” (all) to list the editor butfer contents. |

Type "C" (center) to poll the tools connected to the I'T'CEF connection center.

The names of the tools will be printed.

Type "7” 1o send the editor buffer to the Formatter tool. A new buffer will be
returned.

Type “B” haffer switch) ta toggle back to the unlormatted bufTer.

Type "K” 10 seaw ihe editor bulfer to the Ada statement counter. The number of
Ada statements. blank lines. comment lines ete. will be printed.

I CONTROIL-Y must be typed, refresh the database betore logging into the
CALS again. as follows:

Type CONTROIL=Y
Type STOP
Type @REFFRI-STH

Inter="Tool Communication lI'inal Report
D613-21270 17

CDRL. 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

3. UNIMPLEMENTED FEATURLES "

Not all features ol the I'TCH were implemented under this task. Only the core facilities
required for the demonstration were Tully implemented. In particular, the following
I'TCE packac >+ ~re not implemented:

Pach, . winory Stream_10 - protocol for transmitting Ada data structures in a
Loty s ey form,

Package Sequential_Stream_IO - an I'T'CF version of Ada’s Sequential_10.

Packa»- lessage 1O - a generic package for the convenient encoding and
decodir. of short streams.

Also, the capability o conncet together several connection centers was ot
implennted. This Teature is usclul primarily in the implementa.don conncctions
between different hosts, c.g. o support remote p.ocedure calls among a network of
loosely coupled hosts.

Inter="Tool Communication FFinal Report
D63 -21270 : , IS

NS

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

9. CONCLUSIONS AND LESSONS LIEARNED a

This successful implementation and demonstration of the I'TCF proves that the ITCT
concept is workable and that it has practical applications. Although the demonstration
tools (especially the line editor) may not be heavily used in a real SELL, the same
prinuiples applicd o adapt these tools could be applied o more popular screen editors
and morce sophisticated source relormatters and other source analysis tools.

The eatension of « ol (such as an edito. j through eaploitation of the functionality of
other tools certainly appears worth pursuing. Such eateasions of Tunctionality through
in cgration of mdgpuuluu touls has several advantages. In the sample demonstration,

ool functionality is made more ..ceessible to the user. Without the use ol I'TCF

integration, the user wishing to reformat his source program (under development) is
forced 1o eait the editor. type a icngthy command o invoke the reformatter specilying
the location of the program 1o be reformatted and the focation Tor the resulting output
(which may be subsequently discarded). The user must examine the results and then
re=invoke the editor to continue development of the source program. Such obstacles to
tool usage (ir this case the use ol the reformatier) are likely to leave such tools
underutilized or cven unutilized. On the other hand, with integration through the I'T'CF,
the reformatting lunction becomes immediately available without exiting the cditor.
Only a simple “command need be typed; the soyurce is reformatied dnd lmmg(lmu.ly
available for further inspection and editing.

Similarly, a uscr of the editor may wish to know it he has exceeded the source code
de opment guidelines of his project (which require that Ada procedures contain less
thar 50 statements) as he is actually typing the procedurce. Il the user must exit the
editor session in order o use the Ada -oicment counter tol, then the statement
counter tool will be much less uselul to him.

In additon to tie user convenience which ITCF integrat™ s may provide, there are
other advantages. Tools which are integrated through the ».v.2 o still independent of
one another. They can be linked and maintained indep mdently of one another.
Separately linked tools integrated through ITCE oceupy less memory than would be
required il the ools were integrating by linking them inle common memory images.
Morcover. due o naming contlicts in independently developed ools. such tinking is notl

“al ways possible,

When a shared connection center with server ools is used by several users. cach server
ol is represented as a single, serially reusable process. This has several advantages.
The ol images (even il non=reentrant) are represented only onee in memor_ . The
number ol processes which must be managed by the underlying system is smaller. “The
ool images are not reloaded Trom disk cach time they are invoked. The tool
claboration and other ol initialization is performed only once for all users.

[nter=Tool Communication Final Report
ND6IR-21270 19

CDRL 01270 The BOEING Company CDRL 01279
TASK BR67 D613-21270

A typical problem in shared processing environmients is the use ol large,
resource-intensive tools (such as an Ada compiler) by several users concurrently.
Somctimes as few as two concurrent invocations of such tols can drastically reduce
system through-put due to contention for memory, processing. and 1O resources. The
ITCE can be used (as demonstrated) to conveniently serialize access to.such tools in
order to maximize through-put in these types of environments. For example, a
common connection center could used by all CLI processes to serialize the use of the
compiler and other tools '

Inter="Tool Communication Final Report
D6I3-2127) 20

CDRL 01270 The BOEING Company CDRL 01270
TASK BR67 D613-21270

10. FUTURE APPLICATIONS ‘-

The connection center and other concepts employed in the ITCE are relatively new,
The potential applications are as yet not fully defined. The !esign and implementation
of the ITCF have been done with fleaibility uppermost in order that the potential of
this tool not be limited to specilic integration scenarios that happened to be envisioned
by the ITCF designers and implementers.

Other practical application scenarios should be investigated as the STARS program
continues. There may be many as yet uninvestigated apphcdtmns Once path toward
wider application would be to make the ITCY aulllu.s more readily available at the
.Command Line Interpreter level of the environment. This could be accomplished by
implementing the I'T'CI mechanisms which support RPC (remote procedure call) and
then integrating the I'T'CH functionality into ACE (the Ada Command Environment).

Another area for application ol the I'I'CI" could be application program developmuent
and testing. The use of software-lirst methodologies will lead to the need o test
application softwarc within the software development environment before the target
hardware is available. Many applications to be developed are real-time systems
utilizing tasks that respond to incoming “stcams” of environmental data. There is
clearly potumal here to use the ITCH 1o create simulated epvironments and to, monitor
and record responses. There is even the possibility of direct use of TICT stream
management facilities in the applications themselves as a means of efficient inter-task
communication and transicnt data management.

Inter =Tool Communication Final Report
D613-21270 21

STARS Task BR-67
Inter-Tool Communication Facility (ITCF)
Final Report
13 February 1990

1. Introduction

The Inter-Tool Communication Facility (ITCF) was specified under STARS Task
Qll1. A VAX/CAIS-A implementation of the core ITCF facilities, a
demonstration of the ITCF using existing tools, and this final report were
completed under STARS Task BR67. This reports describes the ITCF, the
design, the implementation, and the demonstration performed. More detailed
documentation and information about the ITCF and the demonstration tools
can be found in the ITCF Version Description and in the source code for the
ITCF packages and for demonstration tools. All ITCF deliverables including
source code and reports are currently on the MDSC VAX under the root
directory:

SYSSUSER7 [SOFTECH1 . USERS . SABBUHL. ITCF]
The file:
SYSSUSER7 [SOFTECH1 . USERS. SABBUHL. ITCF] ITCF_VERSION_DESCRIPTION.ADS

describes the directory organization of the deliverables.

2. General Description

The following is a general description of the ITCF. More details can be
found in the file ITCF Version_Description.ads and in the package
specifications and bodies for the delivered software.

The ITCF permits concurrently executing tools to cooperate in an integrated
manner while maintaining their high degree of modularity and functional
independence. The ITCF offers a layered architecture of communication
services which may be adapted to meet the requirements of a variety of tool
integration strategies. The principle conceptual layers are streams, stream
protocols and messages.

The ITCF services manage the complex details of inter-tool communication
and provide conceptually simple and easy to use interfaces to the tool
writer. These services facilitate the integration of tools with relatively
modest effort, including existing tools which were not originally designed
to use the ITCF packages.

The ITCF is intended to transfer data which is primarily transient in
nature as opposed to data which is permanently stored in the environment
data base. Permanent data should be handled through the environment object
management system. Nevertheless, simple tools can be implemented, using
the ITCF packages, which allow the connection of other tools to files
(including devices) as sources and sinks for inter-tool data.

The ITCF is also intended to support communication between tools executing

in different CAIS-A environments that are connected by a gateway. However,
this feature was not implemented under task BR67.

3. ITCF Concepts

The underlying concepts of the ITCF have been derived from a number of
sources. These include UNIX pipes, plumbing fixtures and filters; the
CAIS-A 10 Connection Model; ard various Remote Procedure Call (RPC)

facilities and stream manipulation packages. The FIELD environment
integration mechanism, described by Steven Reiss of Brown University, was
particularly influential.

3.1 Clients and Connection Centers

The focus of ITCF operations are server processes called connection
centers. A given connection center may have one or more clients. A client
may be a tool (i.e. a process), or a gateway. A gateway client represents
other clients and/or connection centers on a remote host system. Clients
communicate with one another via the connection center.

The first step in using the ITCF is the creation of a connection center.
After the center has been created, clients may be connected to the center.
Connection of a client to a connection center establishes a communications
channel between the client and the center. This channel is called a
connection. Clients may be connected or disconnected at any time. Only
clients of the same center may communicate with one another. Each client -
may be connected to only one center at a given time. Clients may
communicate through the connection center concurrently.

3.2 Streams

At the lowest conceptual layer of the ITCF, data is passed through the
connection center in the form of streams. A stream is simply a sequence of
data (of indefinite length) generated by a client. A client sends data by
writing into a stream. A client receives data by reading from a stream.

The flow of data in a stream is uni-directional. When bi-directional flow
is required, a reverse stream called a reply stream may be used. A client
process may use multiple streams concurrently. The flow of data in each
stream is independent of other unrelated streams.

Streams may be used by processes for direct communication without the use
of a connection center. Connection center facilities are built on top of
the lower-level stream services. Streams may also be used locally within a
process for communication between tasks without the overhead associated
with sending streams through a separate connection center process.

4. Implementation Overview

The core facilities of the ITCF were implemented on the MDSC VAX machine
using VAXAda 2.0 and Version 4.5 of the CAIS-A implementation. The ITCF
services are provided as a collection of packages containing interfaces
which may be called by CAIS tools.

The principal packages implemented are:

- Stream_IO - Supports all low-level stream operations
including interprocess communication.

Text_Stream_IO -~ Provides the interfaces of Ada Text_IO for
reading and writing stream data.

Connection - Provides interfaces that client tools call to
interface with a connection center.

Connection_Center - A generic package which supports the
instantiation of user defined connection
centers.

Distribution - A generic package which performs general

distribution list management functions for

instantiations of package Connection Center.

Monitor - A low-level packages which is used to manage
. concurrent access to streams. This is an
internal ITCF package which contains no tool
interfaces.

-

5. Design Problems and Solutions

Aspects of the ITCF implementation which presented significant technical
challenges were the management of concurrent access to streams and the
interprocess connection resources, and the mecharism to support stream
copying. Stream copying is a fundamental ITCF concept of substantial power
in affecting the distribution of streams and the composition of streams
from other streams.

5.1 Concurrent Access to Streams

Two problems needed to be addressed in the handling of concurrent access.
The first was to develop a conceptual model that would make a correct
implementation conceptually manageable. The second problem was to assure
that management of concurrent access would be reasonably efficient.

5.1.1 Using Ada Rendezvcus

Initial attempts to achieve a conceptual model for concurrent access were
focused on the direct use of the Ada rendezvous model. One question was
how tasking should be applied. The Ada rendezvous model is generally
applied by identifying a object to which concurrent access may occur and
then applying a task to manage the object. All access to the object is
then accomplished through calling entries to that task. Hence, one attempt
to the solve concurrent access problems in the ITCF was to have each stream
be managed by a separate task. This approach was eventually reijected
because it would require a large number of tasks, straining system
resources. Also, it was not clear how stream copying could be implemented.
Stream copying would either require 1) stream-tasks to call other
stream-tasks, thereby making. themselves unavailable for satisfying other
concurrent access to the siream, or 2) the creation of addition copy-tasks
that would simply read data from one stream-task and write-data to another.
While such tasks could be recycled, thus reducing the overall overhead of
frequent task creation, the number of tasks that would be required was
still of some concern.

Another approach to using rendezvous was to deiine a single task which
provides all services to all streams. This task would serialize access to
all stream operations. While this approach would greatly reduce the number
of tasks required, it had some disadvantages. One disacdvantage was that
all stream functions would have to be provided in a single large task body.
In order to modularize these functions, calls would have to be used in the
ACCEPT statements of this task body adding additional overhead (which could
possibly be reduced thrcugh the use of PRAGMA INLINE). Also, how to
interface with other tasks which manage itransmission of streams over
connections was not clear.

#hile these problems probably could be overcome, there was one problem that
was shared by all epproaches that used &da rendezvous ezclusively: every
operation on a stream would involve four tasks switches. Task switching
has certain unavoidable cverhead even in the best Ada runtime
implementations. All registers must be stored and loaded, and the
scheduling algorithm must be invoked. This would imply that an nperation
vwhich is to write a single byte to a stream could have an overhead en the
order of a hundred instructionz. This overhead could be cignificantly
reduced by uzing bufferinag to minimize the nurdtwr of rendervoemz repireld to

transmit a given amount of data. However, this would only help in the Put
and Get functions in package Stream_IO. The overhead for all other
functions would not be reduced.

5.1.2 Using Monitors

An alternative approach was to apply Hoare's Monitor concept. In this
approach, the set of all streams is considered a shared resource to which
access is control via a monitor entity. Whenever a task needs to operate
on a stream, it must first enter the monitor. Monitor entry i3 queued so
that only one task can execute within the monitor at a time. If the
operation cannot pbe completed immediately (for example an attempt to read a
stream which is temporarily empty), the task may suspend itself on a
condition variable until the operation can be completed. TWhen a task
suspends itself within a monitor, another task is allowed to enter.
Eventually, a task will enter which writes to the stream and signals the
condition variable upon which the suspended task is waiting.

5.1.3 Monitor Implementation

The monitor framework was very helpful in sorting out the concurrent access
problems. However, since Ada does not directly support monitors, it was
necessary to consider how they would be implemented. Waiting must occur
when a task attempts to enter a monitor, if another task is using the
monitor, and when a task must be suspended on a condition variable. In Ada,
the only way for a task to wait until some event occurs is through a call
to a task entry. A very simple and direct approach to the monitor entry
problem is to use a simple task which alternately accepts an entry cail to
enter the monitor and an entry call to leave the monitor. The major
drawback to this solution is that the cycle of entering and leaving the
monitor would require two rendezvous involving eight task switches.

However, an important observation is that, in most cases, when a task
attempts to enter the monitor there will be no task executing in the
monitor. Thus, in most cases a rendezvous should be unnecessary. In the
ITCF implementation, a counter which can be incremented/decremented and
tested as an atomic operation is used to determine whether a task is
currently executing within the monitor. A rendezvous is used to suspend an
entering task only if the result of incrementing the counter indicates that
~another task is already executing inside the monitor. This strategy
reduces the overhead of monitor entry and exit to a few instructions,
versus the hundreds of instructions that would be executed using rendezvous
exclusively.

The technique used could be criticized for not being pure Ada. However,
the only implementation dependency introduced by this technique is the
implementation of the atomic counter on the host. Most processors have
such an instruction. Others have an instruction (such as a test and set)
which can be used to synthesize an atomic counter. l1a the case of the VAX,
the VAXAda compiler has a built-in procedure for an atomic counter. For
other hosts or compiling systems, it may be necessary to write a small
assembly language unit.

In any case, the dependency is isolated within a small package called
Protected_Counter. There is no dependency on the Ada run-time
implementation. All tasking operations are still handled in pure Ada.

5.2 Strear Copying

Several false starts were required in the design of stream copying before a
satisfactory solution wac arrived at. The final solution was to place an
item representing the 'tail" (i.e. the remainder) of a copied stream in the
item queue of every target stream to which the stream is copied. These

tails are kept on a list. Each time another data buffer is added to the
source stream, an item referencing that buffer is inserted into each target
stream immediately ahead of each tail (in the list of tails) for the copied
stream. This effectively copies the data into each target stream at the
appropriate point within each of those streams. When the copied stream is
closed, the tails are discarded since no further insertions of data from
the copied .ream are necessary.

In applicat..ons involving large streams, the amount of data which is
buffered in a stream must be bounded to prevent storage resources from
being exhausted. Handling of bounded buffering in streams was problematic
due to the copying facility. Initial, it was not clear how to account for
buffered data which has been copied. BAs the design of the copy capability
progressed, it was decided that buffers would be copied by reference rather
than by value for efficiency reasons. The accounting problem of placing
bounds on buffering was then solved by designating the stream to which data
is originally wxitten as the owner of that data. Thus, copying a stream A
to a stream B has no affect on the amount of data that can be written
directly to stream B. A shared buffer is only released after every
reference to it in any stream has been deleted. Thus, write operations to
stream A which has been copied to stream B may be blocked until data is
read from both streams A and stream B.

6. Changes to the Original Design

Few changes were made to the ITCF specifications during the implementation.
However, one significant change was a redistribution of the functionality
provided by the packages Stream_IO and Stream_Services. During the
implementation it was realized that the underlying stream services (which
were not detailed in the specification) could be useful outside the context
of ITCF connection centers. Thus, interfaces originally intended to be
hidden in the implementation of Stream_Services were instead made a visible
part of package Stream_IO. Thus, package Stream_IO now provides full
access to low-level stream functionality. Package Stream Services was
eliminated.

Higher-level functionality, associated specifically with the use of a
connection center, was removed from package Stream IO and placed in package
Connection which already included interfaces through which client processes
communicate with a connection center. (One regret here is the package name
Connection which would more appropriately be Center_IO. This could be
fixed in a future version.) The rearrangement of these services improves
ITCF modularity since general-purpose stream services (provided by
Stream_IO) can now be used without the overhead of also binding-in
connection center support.

7. Demonstration of the ITCF

The selection of a demonstration for the ITCF was a compromise between the
desire to demonstrate a meaningful, non-trivial ITCF application and the
need to devote most of the available time to the implementation of the
ITCF. A meaningful demonstration would be one in which the functionality of
the existing tools is integrated. The repository containing STARS and
SIMTEL tools was considered as the primary source of existing tools. 1In
order to minimize the risk of demonstration problems, attention was focused
on relatively simple, small tools. A demonstration of the ability to
integrate tools was of more interest than the tools themselves. For
example, integration of the ITCF with ACE (Ada Command Environment) was
considered but was not undertaken, primarily because ACE is large body of
software which would have had to be ported from a UNIX environment to
CAIS-A on a VAX. Also, the integration of ITCF with ACE would not in
itself demonstrate the utility of the ITCF. At least two more tools would
be required to perform some sort of demonstration.

7.1 Tool Selection

There were several tools in the repository which could perform operations
on Ada source code. These included editors, spelling checkers, Ada
statement counters and Ada source code reformatters. Since programmer's
spend much of their time using text editors, it seemed that a natural
choice for a demonstration would be one which extended the functionali*y of
a text editor through integration with other text processing tools. Tnus,
a demonstration was conceived in which an editor would be the primary tool
interfacing with the user and would be integrated with other text
processing tools operating as servers through a connection center. This
scenario seemed to provide a relatively straight-forward demonstration.

A simple line editor, written in Ada, was chosen from the repository.
Although it is unlikely that this particular editor would be a heavily used
tool in an actual SEE, the same types of extensions could be made to the
more popular varieties of screen editors. For purposes of the
demonstration, additional commands were added to the editor which would be
carried out through a connection center. In particular, new commands to
reformat and to count statements in Ada source code being edited were
added. These new commands cause the contents of the current editor buffer
to be transmitted to other tools via a connection center and a reply to be
received by the editor.

An Ada source code reformatter was selected from the repository. There
were at least two choices. The simpler and smaller reformatter was chosen.
Initially, a spelling checker was also selected as a server tool for the
demonstration. However, as time began to run out it was decided to replace
the spelling checker with a simpler tool, an Ada statement counter, to
reduce the risk of not meeting schedules. The main reasons for the
substitution was that the spelling checking had a very long startup time
and its user interface seemed complex. It was not clear how much effort
would be required to adapt it for an acceptable demonstration.

In order to demonstrate the broadcast and reply concatenation capabilities
of the ITCF, another simple command was added to the line editor. This
command causes a message to be sent to all clients of a connection center
which have registered themselves as server tools. Each tool responds with
its registered name. These responses are concatenated into a single stream
by the connection center and delivered back to the editor which prints the
response. Hence, the net affect of the this new editor command is to poll
for the names of all available server tools which are connected to the
center.

7.2 Tool Adaptation

Adaptation of the tools chosen for integration via the ITCF was
straight-forward. 1In the case of the line editor, the new commands were
readily added. However, the command for reformatting suggested that
another editor extension would be necessary. The problem is that if there
are mistakes in the source code, the results of reformatting could be
erroneous in which case the user may wish to restore the prior contents of
the editor buffer in place of the reformatted contents. The mechanism used
by the editor to store the text being edited was easily modified to handle
two text buffers instead of one. BAncther command was added to the editor
which allows the user to toggle between these buffers. Thus, after a
buffer is formatted the user has the option of switching back to the
original text buffer as it was before invoking the reformatter.

Both the reformatter and the Ada statement counter tools were easily
adapted since they already used TEXT 10 for purposes of input and output.
Bdaptation of these tools was largely a.matter of adding a few calls to the
ITCF package Connection. Each tool had to perform the following
initialization steps:

1. Call Open_Connection to initialize the connection to the connection
center.

2. Call Register Pattern to register the identification of the tool
with the connection center.

3. Call Activate_Connection to notify the connection center that the
tool was ready to receive request streams.

Thereafter, the tools would call the Receive interface in package
Connection to receive each stream containing source code to be processed.
The tools would then open each stream using TEXT_STREAM_IO. Since these
tools already used TEXT IO to read their input and write their output, the
TEXT_IO calls had only to be changed to call TEXT STREAM IO instead.

More detailed information about the changes made to tools for adaptation
can be found in the Ada source code files for the tools.

7.3 Tool adaptation Problems

Although the changes necessary to integrate the tools with the ITCF were
minor, other aspects of tool behavior became important in the context of
integration. This was particularly evident in the reformatter tool. The
reformatter, as it was written, would stop processing if it encountered
anything which is not correct Ada in its input stream. While this sort of
behavior may be acceptable in a stand alone tool, in an integration setting
it seemed counter—-productive. If the user sent his editor buffer to the
reformatter, only part would come back in the (very likely) event that the
source code contained errors. Hence, changes were made to the reformatter
to cause it to pass remaining source code through unchanged in the event of
a syntactic error from which it could not recover.

The reuse of tools such as the reformatter in this way increases the need
for tool reliability. While occasional failures of a stand-alone tool may
be tolerable, the failure of a tool in a closely integrated scenario may not
be so well tolerated. For example, an obvious and implied extension of tie
demonstration scenario would be the multiplexed use of the connection center
and the server tools (the reformattexr and the statement counter) by several
independent invocations of the editor tool. That is, the services provided
by the connection center could be provided to multiple independent users.

In this case, if one user sends an source program to the reformatter which
causes it to abort, then the facility is also lost to the other users of
the connection center.

Hence, the robustness of tools becomes more critical. It may be that
future adaptations of tools to the ITCF should include considerations such
as restarting a tool if it fails. At the very least, when one tool fails,
other tools connected to connection center should not necessarily fail as a
consequence.

7.4 Tool Adaptation Effort

Much of the effort that was necessary to adapt the reformatter was spent in
trying to fix existing weaknesses and make it more robust. There are still
existing bugs in this tool which could not be fully investigated in the
time available. Approximately a two man-weeks of effort were applied to
this tool.

Adaptation of the Ada statement counter was trivial, requiring only a few
hours. It was only necessary to add a main processing loop.

AdGaptation of the line editor was fairly straight-forward. Some knowledge

of its internal structure was necessary in order to add the new commands
and to add the capability of multiple buffers which could be swapped via a
command. The editor adaptations required approximately a man-week.

Note that all adaptations were performed by a programmer familiar with the
ITCF interfaces but completely unfamiliar with the tools being integrated.
No consultation from others was sought in performing the adaptations.
Realistically, this situation (no consultation) probably reflects typical
future tool adaptation scenarios. However, those with expertise in these
tools could have performed the necessary adaptations more quickly.

7.5 Instantiation of the Demonstration Connection Center

For flexibility, ITCF connection center software is provided in the form of
generic packages which must be instantiated by the user to create a
connection center having the desired distribution strategy. The connection
center instantiations used in the demonstration are in a package called
Integration Center. The actual parameters for the instantiation include an
Ada type defining patterns and a matching function which compares streams
to be distributed against patterns. The Integration_Center package defines
patterns to be simple strings up to 20 characters long. These strings are
the names of the server tools connected to the Integration_Center, e.g.
"Formatter" and "Ada Count". Requests sent by the line editor to tlre
connection center have a header which indicates which tool is to receive
the stream. A stream with the header "*" is sent to all of the server
tools connected. The "*" header is used to implement the editor command
which polls the server tools connected to the connection center.

The implementation of the Integration_Center was relatively simple since
most of the work is already taken care of in the of bodies of the generic
packages. However, instantiation of package Distribution is non-trivial,
requiring a detailed understanding of how to distribute call streams and
how to concatenate their corresponding reply streams. The process of
making a connection center could be made substantially easier by providing
a higher-level generic package which would automatically instantiate the
package Distribution with a standard distribution strategy.

7.6 Demonstration Performance Results

Responsiveness of the special editor commands was found to be fairly good
once all tools and the connection center were established and initialized.
Typical response times for small editor buffers is one or two seconds.
However, the initial establishment of the connection center and the tools
is fairly lengthy primarily due to the many node creation operations
perforr -~ by the CAIS-A implementation in creating the processes and IO
channels ,six nodes are created for the demonstration configuration). It
is expected that these creation times will be much shorter in future,
improved releases of the CAIS-A implementation.

Performance vas significantly poorer when large streams were transmitted. A
three page source file can take on the order of 20 seconds to be
reformatted. The computational overhead for stream management is relatively
low. The apparent rnause of the performance problem with large streams is
the use of polling in the low-level IO mechanism. It is likely that
performance would be much better if this polling mechanism were replaced
with an interrupt-driv~n IO mechanism.

7.7 Running tlr.o Demonstration
The following stens may be used to run the demonstration on the MDSC VAX:

1. Logon as user SOFTECH], password GREENE.

2. Type: RUN UOBJ:CAIS_LOGON to logon to the CAIS.
Specify user ITCF_DEMO, password ITCF_DEMO.

. Wait for the prompt "file?". This may take a minute.

. Type the name of a VMS file to read into the buffer
or

. Type a carriage return to start an empty buffer.

. Type "H" (help) and "S" (summary) for an editor command summary.

o ~J O e W

. Type "A" (append) to enter an Ada program from the keyboard.
Type "." CR to end input mode.

9. Type "L" (list) "A" (all) to list the editor buffer contents.

10. Type "C" (center) to poll the tools connected to the ITCF
connection center. The names of the tools will be printed.

11. Type "Z" to send the editor buffer to the Formatter tool.
A new buffer will be returned.

12. Type "B" (buffer switch) to toggle back to the unformatted
buffer.

13. Type "K" to send the editor buffer to the Ada statement counter.
The number of Ada statements, blank lines, comment lines etc.
will be printed.

14. If CONTROL-Y must be typed, refresh the database before logging
into the CAILS again, as follows:

Type CONTROL-Y
Type STOP
Type @REFRESH

8. Unimplemented Features

Not all features of the ITCF were implemented under this task. Only the
core facilities required for the demonstration were fully implemented. In
particular, the following ITCF packages were not implemented:

Package Binary_Stream_IO - protocol for transmitting Ada data
structures in a compact binary form.

Package Sequential_ Stream_ IO - an ITCF version of Ada's Sequential_IO.

Package Message_ IO - a generic package for the convenient
encoding and decoding of short streams.

Also, the capability to connect together several connection centers was not
implemented. This feature is useful primarily in the implementation
connections between different hosts, e.g. to support remote procedure calls
among a network of loosely coupled hosts.

9. (Conclusions and Lessons Learned

This successful implementation and demonstration of the ITCF proves that
the ITCF concept is workable and that it has practical applications.
Although the demonstration tools (especially the line editor) may not be
heavily used in a real SEE, the same principles applied to adapt these
tools could be applied to more popular screen editors and more
sophisticated source reformatters and other source analysis tools.

The extension of a tool (such as an editor) through exploitation of the
functionality of other tools certainly appears worth pursuing. Such
extensions of functionality through integration of independent tools has
several advantages. In the sample demonstration, tool functionality is
made more accessible to the user. Without the use of ITCF integration, the
user wishing to reformat his source program (under development) is forced
to exit the editor, type a lengthy command to invoke the reformatter
specifying the location of the program to be reformatted and the location
for the resulting output (which may be subsequently discarded). The user
must examine the results and then re-invoke the editor to continue
development of the source program. Such obstacles to tool usage (in this
case the use of the reformatter) are likely to leave such tools
underutilized or even unutilized. On the other hand, with integration
through the ITCF, the reformatting function becomes immediately available
without exiting the editor. Only a simple command need be typed; the
source is reformatted and immediately available for further inspection and
editing.

Similarly, a user of the editor may wish to know if he has exceeded the
source code development guidelines of his project (which require that Ada
procedures contain less than 50 statements) as he is actually typing the
procedure. If the user must exit the editor session in order to use the Ada
statement counter tool, then the statement counter tool will be much less
useful to him,

In addition to the user convenience which ITCF integration may provide,
there are other advantages. Tools which are integrated through the ITCF
are still independent of one another. They can be linked and maintained
independently of one another. Separately linked tools integrated through
ITCF occupy less memory than would be required if the tools were
integrating by linking them into common memory images. Moreover, due to
naming conflicts in independently developed tools, such linking is not
always possible.

When a shared connection center with server tools is used by several users,
each server tool is represented as a single, serially reusable process.
This has several advantages. The tool images (even if non-reentrant) are
represented only once in memory. The number of processes which must be
managed by the underlying system is smaller. The tool images are not
reloaded from disk each time they are invoked. The tool elaboration and
other tool initialization is performed only once for all users.

" A typical problem in shared processing environments is the use of large,
resource-intensive tools (such as an Ada compiler) by several users
concurrently. Sometimes as few as two concurrent invocations of such tools
can drastically reduce system through-put due to contention for memory,
processing, and IO resources. The ITCF can be used (as demonstrated) to
conveniently serialize access to such tools in order to maximize
through-put in these types of environments. For example, a common
connection center could used by all CLI processes to serialize the use of
the compiler and other tools.

10. Future Applications

The connection center and other concepts employed in the ITCF are
relatively new. The potential applications are as yet not fully defined.
The design and implementation of the ITCF have been done with flexibility
uppermost in order that the potential of this tool not be limited to
specific integration scenarios that happened to be env1310ned by the

ITCF designers and implementers.

Other practical application scenarios should be investigated as the STARS
program continues. There may be many as yet uninvestigated applications.
One path toward wider application would be to make the ITCF facilities more
readily available at the Command Line Interpreter level of the environment.

This could be accomplished by implementing the ITCF mechanisms which
support RPC (remote procedure call) and then integrating the ITCF
functionality into ACE (the Ada Command Environment).

Another area for application € the ITCF could be application program
development and testing. The use of software-first methodologies will lead
to the need to test applicatiu.. software within the software development
environment before the target hardware is available. Many applications to
be developed are real-time systems utilizing tasks that respond to incoming
"streams" of environmental dat.. There is clearly potential here to use
the ITCF to create simulated environments and to monitor and.record
responses. There is even the poussibility of direct use of ITCF stream
management facilities in the applications themselves as a means of
efficient inter—task communication and transient data management.

STARS Task BR-67

Inter-Tool Communication Facility (ITCF)
Demonstration
13 Pebruary 1990

The demonstration tools, tool adaption, problems and results are all
documented in Section 7 of the ITCF Final Report. Demonstration
software can be found in directories under the following root
directory on the MDSC VAX:

SYSSUSER7 [SOFTECH1 . USERS . SABBUHL. ITCF]

